Испытатели транзисторов малой и большой мощности (h21э, Ікво, Ікэк)

Вы здесь: Главная » Новое на сайте » Схема прибора для проверки транзисторовДобавил: STR2013,Дата: 27 Дек 2018Рубрика: [ Новое на сайте, Приборы, индикаторы ]

Прибор для проверки коэффициента усиления мощных и маломощных транзисторов своими руками

Хотя сейчас много в продаже различных приборов и мультиметров, измеряющих коэффициент усиления транзисторов, но любителям что-нибудь мастерить и паять можно порекомендовать несколько несложных схем и доработку.

Данный прибор для проверки транзисторов позволяет точно замерять ряд следующих параметров…

  • Коэффициент усиления h21э маломощных транзисторов.
  • Коэффициент усиления h21э мощных транзисторов.
  • Минимальное напряжение питания коллекторной цепи, при котором сохраняется линейный динамический режим работы маломощных транзисторов.
  • Минимальное напряжение питания коллекторной цепи, при котором сохраняется линейный динамический режим работы мощных транзисторов.
  • Полярность и соответствие выводов маломощных транзисторов.
  • Полярность и соответствие выводов мощных транзисторов.

Принципиальная схема прибора

Работа схемы в режиме измерения коэффициента транзисторов

Эта схема стабилизирует в проверяемом транзисторе ток Б/Э, при этом транзистор открывается и начинает течь ток К/Э, который вызывает падение напряжения на нагрузочных резисторах 36 и 360 ом, для мощных и маломощных транзисторов соответственно. Миллиамперметр при этом измеряет ток или напряжение базы транзистора.

h21э = Iэ/Iб, у нас ток эмиттера стабилизирован, при таком режиме измеряя базовый ток можно легко высчитать h21э и сразу отградуировать шкалу миллиамперметра в единицы коэффициента усиления транзистора.

В режиме вольтметра в цепи базы можно находить минимальное напряжение, при котором базовые и эмиттерные токи проверяемого транзистора перестают зависеть от коллекторного напряжения. Этот параметр важен для оптимизации питающих напряжений усилителей НЧ, транзисторных каскадов отвечающих за линейность преобразуемых сигналов, полу мостовых и мостовых инверторов, и т. д.

Преобразователь напряжения выполнен на двухтактном микроконтроллере электронных пускорегулирующих аппаратов ЭПРА 1211ЕУ1, по типовой схеме включения. Микросхема представляет специализированный микроконтроллер с питанием от 3 до 24 Вольт, с малой потребляемой мощностью, выполненного на полевых транзисторах. Данный контроллер имеет двухтактный выходной каскад с защитным интервалом, содержит малое количество навесных элементов, имеет два вывода для защиты по питанию, вывод для выбора рабочей частоты, максимальный выходной ток 250 мА.

Преобразователь вырабатывает постоянное напряжение 25-30 Вольт для обеспечения режима измерения минимального напряжения, при котором базовые и эмиттерные токи проверяемого транзистора перестают зависеть от коллекторного напряжения.

Обозначение и краткое описание параметров и режимов транзисторов

Для понимания процесса измерения параметров транзисторов, необходимо знать по каким критериям оцениваются измеряемые параметры.

Параметры четырехполюсника взаимосвязаны по определенным системам уравнений, описывающих происходящие процессы.

Если в данное время чаще пользуются одна система, это не значит, что других систем не существует.

Виды систем параметров транзисторов

Существует несколько признанных систем параметров транзисторов.

1. Когда в базовых переменных взяты токи, такая система будет называться, система z — параметров.

Z-система применяется для области низких частот, потому что в ней не учтены реактивные элементы.

По ней измеряются характеристические сопротивления в режиме холостого хода по переменному току, поэтому она вошла в историю как система параметров холостого хода.

В z-системе значения параметров обозначаются буквами r и z.

2. Если в базовых переменных взяты напряжения, такая система будет называться — система y — параметров.

Здесь параметры выражаются в виде полных проводимостей и определяются в режиме короткого замыкания. В y-системе для низких частот параметры определяются активной составляющей проводимости.

В y-системе значения параметров обозначаются буквами g.

Систему y-параметров удобно применять для характеристики параметров плоскостных транзисторов, так как при этом не нужно создавать режима холостого хода. Режим короткого замыкания по переменному току в этой системе создается шунтированием выхода конденсатором.

В этой системе возникают трудности при измерении проводимости обратной связи g12, Потому что для этого измерения необходимо создать режим короткого замыкания на входе транзистора.

Y-систему удобно применять для расчетов, особенно если есть необходимость сравнить транзисторный каскад с ламповым. Параметры этой системы наиболее близки к параметрам электронных ламп.

Эту систему можно назвать системой режима короткого замыкания.

3. Если в базовых переменных взяты входные токи и выходные напряжения, такая система будет называться — система h — параметров. Она же смешанная система.

Смешанная система является наиболее удобной для определения параметров транзисторов.

В h-системе значения параметров обозначаются буквами hб, hэ, hк, для базовых, эмиттерных и коллекторных цепей соответственно.

Коэффициент передачи тока или коэффициент усиления по току.

Коэффициентом передачи тока называют отношение тока коллектора к вызвавшему его току базы.

Коэффициент передачи тока h21 в системе h параметров имеет следующие обозначения:

· h21б коэффициент передачи тока в схемах с общей базой, это hб параметры.

· h21э коэффициент передачи тока в схемах с общим эмиттером, это hэ параметры.

· h21к коэффициент передачи тока в схемах с общим коллектором, это hк параметры.

Но для коэффициента передачи тока есть общее обозначение, применяемое во всех трех приведенных системах параметров, обозначаемое греческими буквами Альфа и Бэта, которое имеет следующий вид.

· Греческой буквой Альфа, обозначается коэффициент усиления по току для транзисторов, включенных по схеме с общей базой — ОБ. Он же обозначается как -h21б. Альфа = — h21б.

· Греческой буквой Бэта, обозначается коэффициент усиления по току для транзисторов, включенных по схеме с общим эмиттером — ОЭ. Он же обозначается как -h21б. Вэта = h21э.

Справка

Транзисторы, у которых между коллектором и эмиттером включен диод, защищающий транзистор от инверсных (обратных) токов, возникающих в результате переходного процесса при работе на индуктивную нагрузку и при возникающем изменении полярности питающего напряжения. Такие транзисторы не пригодны для использования в инверторных мостовых схемах.

Испытатель для транзисторов

Данный прибор работает без единой поломки с 1981 года, за период эксплуатации не было ни одного экземпляра транзистора, которого этот прибор не смог проверить.

    Предлагаемый испытатель транзисторов может с достаточной для схем точностью определять величину усиления транзисторов до 1000 единиц. Это позволяет определять коэффициент усиления составных транзисторов. Прибор точно проверяет усиление транзисторов любой мощности без дополнительных коммутаций.

    Прибор позволяет очень быстро проводить следующие измерения:

  •   Проверку работоспособности транзистора.
  •   Определения коэффициента усиления одиночных транзисторов.
  •   Определения коэффициента усиления составных транзисторов.
  •   Определения проводимости транзистора.
  •   Определения соответствия выводов транзистора.
  •   Подбор транзисторов с одинаковым коэффициентом усиления.

    Принцип действия прибора основан на том, что испытываемый транзистор V1 вместе с транзистором V2 образуют несимметричный мультивибратор.

    Параметры мультивибратора подобраны таким образом, что генерация импульсов возможна только тогда, когда суммарное сопротивление резисторов, включенных в цепь базы испытуемого транзистора, численно равно или чуть меньше значения его коэффициента h21э. Если сопротивление в цепи базы транзистора V1 больше его коэффициента передачи по току, генерация не возникает, и звука нет.

    Структуру проверяемых транзисторов устанавливают переключателем S1.

    Переменный резистор R3, должен быть группы «А», с линейной зависимостью характеристики.

    В приборе примененные транзисторы можно заменить на следующие.

    V2 — КТ315, V3 — ГТ404, V4 — ГТ402 или их импортные аналоги.

    Чем больше усиление транзистора, тем дольше будет слышен звук в динамике.

Схема была опубликована в журнале «Radioamatater» Югославия и в журнале «Радио» №10, за 1981 год.

Спасибо за внимание. Удачи!

Автор:Белецкий А. И.

Доработка испытателя транзисторов

Для данного испытателя транзисторов можно сделать две доработки (сайт:domcxem.ru).

Введена проверка полевых транзисторов и унифицированный звуковой сигнализатор.

Доработанная схема испытателя транзисторов.

1) Отдельная фиксируемая кнопка включает в «базу» проверяемого транзистора резистор, сопротивлением 100 КОм, заземленный с другой стороны. Так измеритель может проверять полевые транзисторы с p-n переходом и p или n каналом (КП103 КП303 и им подобные). Также, без переделки, в этом режиме можно проверять МОП транзисторы с изолированным затвором n- и p- типа (IRF540, IRF9540 и т.п.)

2) В коллектор второго транзистора измерительного мультивибратора (выход НЧ сигнала) я включил детектор с удвоением, по обычной схеме нагруженный на базу КТ 315-го. Таким образом, К- Э переход этого ключевого транзистора замыкается, когда в измерительном мультивибраторе возникает генерация (определён коэффициент передачи). Ключевой транзистор, открываясь, заземляет эмиттер ещё одного транзистора, на котором собран простейший генератор с резонатором на трёхвыводном пьезоэлементе – типовая схема генератора вызывного сигнала «китайского» телефона. Фрагмент схемы мультиметра – узел проверки транзисторов – приведён на рисунке, выше.

Такое схемное нагромождение было вызвано желанием использовать тот же вызывной генератор в узле сигнализации перегрузки по току лабораторного блока питания, так как первый, собранный мной, по упомянутой схеме, испытатель параметров транзисторов, был встроен в ЛБП.

Второй измеритель был встроен самодельный в многофункциональный стрелочный мультиметр, где один трёхвыводной пьезоизлучатель использовался как сигнализатор в режиме «пробник» (звуковая проверка короткого замыкания) и испытатель транзисторов.

Теоретически (я не пробовал), этот испытатель можно переделать для проверки мощных транзисторов, уменьшив, например, на порядок сопротивления резисторов в обвязке проверяемого транзистора.

Так же, возможно зафиксировать резистор в базовой цепи (1 или 10 кОм) и изменять сопротивление в коллекторной цепи (для мощных транзисторов).

P.S. Смотрите также: прибор для проверки величин допустимых напряжений и напряжений утечек транзисторов, диодов, конденсаторов и других радиодеталей.

П О П У Л Я Р Н О Е:

  • Ремонтируем сами пылесос, стиральную машину, холодильник
  • Ремонт пылесосов

    При ремонте пылесоса можно заменить двигатель, якорь в двигателе и угольные щетки. Для примера рассмотрим ремонт пылесоса «Буран». Сначала нужно разобрать пылесос. Для этого открыть откидные замки и снять пылесборник. Снять матерчатый фильтр с уплотнительным кольцом. Открутить 4 винта, соединяющие верхний корпус с промежуточным. Подробнее…

  • Простой способ увеличения крепости напитка
  • УВЕЛИЧЕНИЕ КРЕПОСТИ СПИРТНЫХ НАПИТКОВ

    Самый простой способ увеличения крепости — это газирование! Крепость самого напитка не возрастает, а вот СО2 (углекислый газ) увеличивает скорость усвоения алкоголя в организме в несколько раз.

    Но есть другой вариант увеличения крепости напитка, с помощью простой электрической схемы.

    Подробнее…

  • Автоматический полив цветов.
  • Полей цветы!

     Домашние цветы очищают воздух в квартире, украшают быт. А уход за ними несложен — требуется лишь изредка поливать их. Но иногда полив бывает либо недостаточным, либо чрезмерным. Подробнее…

– н а в и г а т о р –

« позже Бабочка из спичек своими руками!Музыкальный центр своими руками раньше » Популярность: 1 999 просм.

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ

Вы можете следить за комментариями к этой записи через RSS 2.0. Вы можете оставить комментарий:.

↑ О работе схемы

Дальше расскажу о четырех интересных моментах по схеме и ее работе: 1. Применение лампы накаливания в цепи коллектора испытуемого транзистора обусловлено стремлением (первоначально было такое желание) визуально видеть, что транзистор ОТКРЫЛСЯ. Кроме того, лампа выполняет здесь еще 2 функции, это защита схемы при подключении «пробитого» транзистора и некоторая стабилизация тока (54-58 mA), протекающего через транзистор при изменении сети от 200 до 240В. Но «особенность» моего вольтметра позволила первую функцию игнорировать, при этом даже выиграв в точности измерений, но об этом позже…2. Применение стабилизатора тока на LM317 позволило НЕ сжечь случайно переменный резистор (когда он в верхнем по схеме положении) и случайно нажатых двух кнопках одновременно, или при испытании «пробитого» транзистора. Величина ограниченного тока в этой цепи даже при коротком замыкании равна 12 mA.3. Применение 4 шт диодов IN4148 в цепи затвора испытуемого транзистора для медленного разряда емкости затвора транзистора, когда напряжение на его затворе уже снято, а транзистор находится еще в открытом состоянии. Они имеют какой-то ничтожный ток утечки, которым и разряжается емкость. 4. Применение «моргающего» светодиода в качестве измерителя времени (световые часы) при разряде емкости затвора. Из всего вышесказанного становится абсолютно понятно, как все работает, но об этом чуть позже более подробно…

↑ Корпус и компоновка

Далее был приобретен корпус и все эти комплектующие расположены внутри.

Внешне получилось даже не плохо, за исключением того, что не умею я пока рисовать шкалы и надписи на компьютере, но… В качестве гнезд для испытуемых транзисторов замечательно подошли остатки каких то разъемов. Одновременно был изготовлен выносной кабель для транзисторов с «корявыми» ногами, которые не влезут в разъем.
Ну и вот так это выглядит в работе:

Связанные материалы

Упрощенный тестер теплоотводов… Привет, друзья! Небольшое продолжение по мотивам комментариев к статье «Тестер теплоотводов». Я в… Светильник QUICK с лупой. Переделка на LED, вариант MOSFET-драйвера… Предлагаю вашему вниманию небольшое дополнение к моей статье «Люминесцентный светильник с лупой… Тестер теплоотводов… Ранее неоднократно на Датагоре встречался вопрос о том, какую мощность может рассеять некий… Лабораторный блок питания «Belarus 3A30» с защитой и коммутацией обмоток (0-30 V, 3 А)… Здравствуйте друзья. Позвольте представить вашему вниманию мой первый лабораторный блок питания. У… Простой прибор для подбора пар мощных транзисторов… Предельно простое, но удобное устройство для подбора пар кремниевых транзисторов средней и большой… Простой пробник-измеритель полевых JFET транзисторов… Вот уж не думал, что придется развлекаться с полевыми транзисторами. Когда транзисторы попали в… Прибор для наладки и тестирования импульсных блоков питания и сварочников… Я занят ремонтом инверторного сварочного оборудования, стабилизаторов переменного напряжения, и т…. Универсальный генератор на TL494 (прямоугольник и пила)… Генератор предназначен для лабораторных исследований при разработке и наладке самых различных… Регулируемый стабилизатор напряжения с регулируемым ограничением выходного тока… Простенькая относительно схемка, со средними параметрами, на основe транзисторoв с большим… 3-х фазный регулятор с Системой Импульсно-Фазового Управления… 3-х фазный регулятор с СИФУ Регулятор собран на печатной плате размерами 120х150 мм, и предназначен… “Бетник” для мощных транзисторов… Описана конструкция прибора для измерения коэффициента усиления мощных транзисторов. Несмотря на… Блок питания с защитой по току для наладки усилителей и пр. радиоконструкций… Нередко при ремонте или создании нового усилителя возникает проблема безопасной проверки его…

↑ Схема

Принципиальная схема прибора представлена на рисунке. Он состоит из источника питания 16В постоянного тока, цифрового милливольтметра 0-1В, стабилизатора напряжения +5В на LM7805 для питания этого милливольтметра и питания «световых часов» – мигающего светодиода LD1, cтабилизатора тока на лампе – для питания испытуемого транзистора, стабилизатора тока на LM317 — для создания регулируемого напряжения (при стабильном токе) на затворе испытуемого транзистора при помощи переменного резистора, и двух кнопок для открытия и закрытия транзистора. Прибор очень прост по устройству и собран из общедоступных деталей. У меня в наличии был какой-то трансформатор с габаритной мощностью около 40Вт и напряжением на вторичной обмотке 12В. При желании, и в случае необходимости прибор можно питать от АКБ 12В / 0,6 Ач (например). Так же был в наличии китайский цифровой вольтметр-показометр с пределом измерения 0-1 В.

Я решил использовать питание от сети 220В, т.к на рынок для покупок с прибором не сильно пойдешь, да и сеть все же стабильнее, чем «севший» АКБ. Но… дело вкуса.Далее, изучая и адаптируя вольтметр, обнаружил интересную его особенность, если на его клеммы L0 и HI подать напряжение, превышающее его верхний порог измерения (1В), то табло просто тухнет и он ничего не показывает, но стоит снизить напряжение и все возвращается к нормальной индикации (это все при постоянном питании +5В между клеммами 0V и 5V). Я решил использовать эту особенность. Думаю, что очень многие цифровые «показометры» имеют такую же особенность. Взять, к примеру, любой китайский цифровой тестер, если в режиме 20В на него подать 200В, то ничего страшного не произойдет, он лишь только высветит «1» и все. Такие табло, подобные моему сейчас есть в продаже.Возможные варианты цифровых вольтметров 0-2 Вольта с доставкой.Используемые источники:

  • http://www.mastervintik.ru/sxema-pribora-dlya-proverki-tranzistorov/
  • https://datagor.ru/practice/diy-tech/2155-pribor-dlya-proverki-moschnyh-igbt-i-mosfet-tranzistorov-n-kanal.html

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *